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SLð2,CÞ non-Abelian gauge fields in a
photonic molecule array

Zhaohui Dong 1, Xianfeng Chen 1,2,3 & Luqi Yuan 1

Engineering the topological properties of the system has been a longstanding
subject in physics. Here, we propose a scheme to simulate topological mate-
rials with a non-Abelian gauge field in synthetic space-frequency dimensions
where the symmetry between spin-flipped hoppings can be levitated by using
coupled photonicmolecules under dynamicmodulations. The frequency-split
supermodes in these photonic molecules can serve the pseudospin degree of
freedom, which can further be connected along the frequency axis in an
independent way, offering the unique opportunity to explore topological
physics with imbalanced spin-flipped hoppings leading to a complex gen-
eralization of the conventional SU(2) non-Abelian gauge field, i.e., an SLð2,CÞ
gauge field. By varying the spin-flipped hopping terms, we theoretically show
the existence of a variety of Dirac semimetal transitions and the rotation of the
pseudospin projection for the edge states throughout the Brillouin zone. Our
proposal is experimentally feasible and therefore provides a versatile platform
for the study of topological materials under non-Abelian gauge fields in
photonics.

Exploring and controlling novel phases ofmatter hasbeen aprominent
subject in physics. Apart from variation of an external parameter such
as temperature, pressure, ormagnetic field, a synthetic gauge field has
been proven to be a powerful tool in constructing and manipulating
novel phases of matter, especially for neutral particle1–3. In particular,
the non-Abelian gauge field4–9, manifest in a wide range of distinct
fields in physics such as high-energy physics, condensed-matter phy-
sics and electromagnetism, offering an effective way to synthesize
exotic topological phases10–20. Such a kind of gauge field is associated
with the concept of the non-Abelian group in mathematics, as they
hold non-commutative (non-Abelian) matrix-form components, which
provides a framework for describing the statistics of spinful particles.

It has been growing interest in synthesizing non-Abelian gauge
fields in diverse platforms. Compared to continuum systems21–26, a non-
Abelian gauge field in a lattice model has only been demonstrated in a
few platforms, such as ultracold atoms27–30, electrical circuits31,32 and
photonic systems33. However, these works focus on the realization of
an SU(2) gauge field, while a non-Abelian gauge field does not

necessarily belong to the SU(2) group. For example, the complex
generalization of the SU(2) group [i.e., the SLð2,CÞ group] can also
fulfill the requirement of non-commutativity. This leads to a question of
whether an SLð2,CÞ gauge field can result in more fruitful topological
phase transition phenomena and how such a gauge field can be con-
structed in experiments. However, for the existing scheme, the spin-
flipped hopping terms for different spins are usually not independent,
namely they are generated by the same light fields/elements27–33, hence
lacking flexibility. This poses challenges in realizing the SLð2,CÞ gauge
field, which requires a flexible tailoring to achieve independent spin-
flipped hopping for different spins. Nevertheless, recent advance in
constructing non-Abelian lattice models in photonic synthetic fre-
quency dimensions33, shows great potential in tackling such a task and
exploring the underlying physics of an SLð2,CÞ gauge field.

Here, we generalize the SU(2) non-Abelian gauge field (linear
superposition of Pauli matrices with real coefficients) to an SLð2,CÞ one
featuring non-Hermitian matrix-form components (complex coeffi-
cients), which can be realized by introducing imbalanced spin-flipped
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hoppings to the Hamiltonian model in synthetic frequency
dimension34–38. Such kind of gauge field results in various kinds of
transitions of Dirac semimetals39, including semimetal-insulator transi-
tion, different Dirac-type semimetal transition, annihilation and gen-
eration of Dirac points. Furthermore, the imbalanced spin-flipped
hopping leads to the intrinsic competition between two hopping
mechanisms that results in the transition of the orientation of the edge
state projection on the pseudospins, changing from nearly constant to
a sinusoidal variation during this process. Moreover, we find that the
nontrivialZ2 topological phase can be protected by amore generalized
symmetry under the SL(2, C) gauge field. Our work offers the first
experimentally feasible proposal to study the underlying physics of
SLð2,CÞ gauge fields, which enriches the context of topological physics.

Results
Model
We consider themodel composed of a one-dimensional ring resonator
array including resonant site rings (green) and off-resonant link rings
(yellow) in Fig. 1a. Each site ring supports resonant modes at fre-
quencies ωm =ω0 +mΩ, where ω0 is the reference frequency and Ω is
the frequency spacing. A pair of two coupled site rings (labeled by A
andB) can formaphotonicmolecule40,41, where each resonantmode at
ωm hybridizes into symmetric and antisymmetric supermodes at
ωm,± =ωm ± γ. Here, γ is the coupling strength between the two rings.
Electro-optic modulators (EOMs) are placed in ring A (or B) in the n-th
photonic molecule at modulation form JA=BðtÞ= ±2κ1,n cosðΩ�
2γÞt + 2κ2,n cosΩt ±2κ3,n cosðΩ+2γÞt where κ1,n, κ2,n, and κ3,n are
spatially-dependent modulation strengths. The dynamical modulation
on the light field by the EOMs produces sidebands from the original
frequency, determined by the modulation frequencies of the mod-
ulation signal JA/B(t), and hence connects different frequencymodes in
the same photonic molecules with frequency spacing Ω − 2γ, Ω, and
Ω + 2γ, respectively (details are provided in the Supplemental Note 1).

We assume the spatial spacing between nearby photonic mole-
cules as d, where off-resonant link rings are added to induce spatial
coupling g42,43. Note that we introduce a small vertical shift on the
center of link rings with respect to the center of site rings (see Fig. 1a),
and therefore the light propagating from left to right accumulates a

different phase from that of light propagating from right to left (see
Supplemental Note 1). The additional propagation phases are expres-
sed by αm,±∝ϕm ±φ for symmetric and antisymmetric supermodes,
with the effective +(−)αm,± for the connection from left (right) to right
(left) photonic molecules with a multiple of 2π44. Here,
(ϕm ±φ)∝ (ωm ± γ) originates from the propagation phase accumula-
tion for all supermodes, wherewe chooseϕm to bemultiples of 2π and
hence α ≡ αm,± = ±φ for each pair of supermodes.

By further assuming all coupling strengths are relatively small and
applying the rotating wave approximation, we obtain the Hamiltonian
of the lattice (see Fig. 1b) with n (m) being the space (frequency) index
in the synthetic space (detailed deviation of the Hamiltonian is pro-
vided in Supplemental Note 1):

H =
X
n,m

cym+ 1,n, + c
y
m+ 1,n,�

� � κ2,n κ3,n

κ1,n κ2,n

� �
cm,n, +

cm,n,�

� �

+ g cym,n+ 1, + c
y
m,n+ 1,�

� � eiφ 0

0 e�iφ

 !
cm,n, +

cm,n,�

� �
+H:c:,

ð1Þ

where cym,n, ± (cm,n,±) is the creation (annihilation) operator of the
symmetric or antisymmetric supermode at ωm,± for the n-th photonic
molecule. Each pair of the symmetric and antisymmetric supermodes
can be treated as a pair of pseudospins. The Hamiltonian can be
rewritten by

H � H0 +H1, ð2Þ

H0 =
X
n,m

cym+ 1,n, + cym+ 1,n,�

� �
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� �

+ cym,n+ 1, + cym,n+ 1,�

� �
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Fig. 1 | The proposed scheme for constructing a two-dimensional non-Abelian
lattice gauge field by a photonicmolecule array. a Schematic view of the system
composed of coupled ring resonators being dynamically modulated by EOMs. The

hybridization of the modes in two individual rings causes a frequency splitting
regarding to the original resonant frequencyωm.b Such a systemcanbemapped to
a lattice supporting the two-dimensional Hamiltonian.
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where σ0, σ1, σ2, and σ3 are Pauli matrices, κ1,n � ða� 1Þ sinnθ,
κ2,n � cosnθ, κ3,n � ða+ 1Þ sinnθ, and g = 1 (i.e., the Hamiltonian is
dimensionless and all coupling strengths can be scaled versus g, and
a∈R, θ∈ [0, 2π]). Importantly, the parameter a represents the
imbalance between the pseudospin-dependent spin-flipped hopping
term, namely, jκ1,nj � jκ3,nj=2a sinnθ (for 0⩽ a⩽ 1), which modifies
the hopping along the frequency dimension from an SU(2) type of
matrix to an SLð2,CÞ one, and correspondingly marks the appearance
of an SLð2,CÞ gauge potential. The corresponding non-Abelian gauge
field is written by

A �
ðAf,",AxÞ= ηðθÞσ2 � iaηðθÞσ1,φσ3

� �
ðAf,#,AxÞ= ηðθÞσ2 + iaηðθÞσ1,φσ3

� �
(

, ð5Þ

where Af,↑ (Af,↓) is the gauge field component along the positive

(negative) direction along the frequency axis, ηðθÞ= 1
2
ffiffiffiffiffiffiffiffi
a2�1

p log cosnθ+ β
cosnθ�β,

and β=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1Þsin2nθ

q
. One can see the component Af,↑ (Af,↓) gives

the hopping that mixes the pseudospins along frequency dimension,
while the component Ax provides an opposite hopping phase ± φ
along spatial dimension. In particular, A does not belong to an SU(2)
gauge potential when a ≠ 0 due to the appearance of the non-
Hermitianmatrix − iaη(θ)σ1 inAf,↑ (Af,↓), instead, it refers to anSLð2,CÞ
gauge potential, which is a complex generalization of the SU(2) one
(see Supplemental Note 2). Note that the asymmetric gauge field
component Af,↑ (Af,↓) preserves the Hermiticity of the Hamiltonian.

Annihilation of Dirac points and rotation of pseudospin
We investigate how the bandstructure changes when a ≠0, for the
Hamiltonian under the non-Abelian magnetic flux (θ, φ) = (2π/3, π/2)
(so the lattice has the period of 2π/θ = 3 along the spatial axis). In
Fig. 2a, b, we show the band structures of H with a =0 and a = 1 (see
“Methods” for the Bloch Hamiltonian in the reciprocal space), where kf
(kx) is the quasi-momentum reciprocal to the frequency (space) axis
and ε is thequasienergy. The six bands are separated, labeled from1–6,

which reflects the non-Abelian nature of the gauge field (see Supple-
mental Note 3). When a =0, there are four band-crossing points
between band 4 and band 5 in Fig. 2a, which refer to type-I Dirac
points39. However, whena = 1, there is only a trivial gapbetweenband4
and band 5 in Fig. 2b, indicating a semimetal-insulator transition. Dif-
ferent Dirac-type semimetal transition and topological-normal insu-
lator transition can also be presented if one chooses different flux
(θ, φ) (see Supplemental Note 4).

Properties of edge states with a spatial open boundary condition
forN = 31 sites are investigated.Wedefine a quantityΛ= jvnb

j2=Pnjvnj2
to characterize the localization amplitude of an eigenstate v on the
edge, where nb = 1 or 31 labels one edge. Furthermore, we define the
edge-state pseudospin projection (ESPP) as σi

	 

= vnb

∣σi∣vnb

D E
, which

partially reflects the changes in the spin-orbit coupling of the Hamil-
tonian H.

Whena =0, theDirac points inFig. 2a are located atkfΩ =0.8π and
1.2π. There are four bands that support large localization Λ for a range
of kf, indicating the corresponding edge localization (see Fig. 2d),
where two of them (labeled in blue and red) aremerged into the upper
bulk bands for kf out of two Dirac points and the other two (labeled in
green and yellow) belong to edge states. Two dips in the curves of Λ
appear in the vicinity of the Dirac points as bulk bands close into the
degeneracy at the Dirac points, so edge modes do not hold the loca-
lization feature at the two dips (see Supplemental Note 5). The dis-
tribution of the pseudospin for the upper blue band and lower green
band is given in Fig. 2e, f, respectively. The upper red band (bottom
yellow band) has the opposite distribution of the ESPP σi

	 

over the

entire kf as the one for the upper blue band (bottom green band). The
ESPP σi

	 

for these two bands is nearly a constant with respect to kf, so

the ESPP is pinned at the y-axis in the Bloch sphere with kf varying,
except for a sudden jump to the z-axis when kfΩ =0 and π due to the
vanishing of the spin-orbit coupling term σ2kf (see Supplemental
Note 6). As a increases, the Dirac points move closer to each other,
then merge at about a =0.55, and finally vanish due to their opposite
Berry curvature (see Supplemental Note 7), resulting in gap opening,
as illustrated in Fig. 2c. The additional spin-flipped hopping (i.e., the
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Fig. 2 | The annihilation of theDirac pointswith the changes of the localization
features at the edge and the variation of ESPP. Bandstrucutre of the model H in
Eq. (2) by varying a from (a) a =0 to (b) a = 1. Red numbers in a denote the band
labels. c Projected bandstructure with different strengths of the spin-flipped hop-
ping a. Red dashed lines denote the position of the Dirac points, which correspond

to kfΩ =0.8π, 1.2π and kfΩ =π, respectively. Blue dashed lines denote the corre-
spondingmomenta in Fig. 3.dThequantityΛ for the localization of the edge states.
The colors of the lines are in accordancewith the colored bands in (c). e, f ESPP σi

	 

of the blue band and green band in (c), respectively.
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term with a ≠0) also causes the hybridization between green and
yellow bands and the hybridization between blue and red bands (see
Supplemental Note 6), where the former hybridization results in the
monomorphic edge band and the latter one pushes one of the
resulting band into the upper bulk (so the red band is not shown for
a ≠0). One can see, at a = 0.55 (Fig. 2c), the Dirac points get close to
each other near kfΩ =π, and Λ of the edge state is nearly 0 in the
vicinity of kfΩ =π. When a ≠0 and such hybridization occurs, the ESPP
σi

	 

at the vicinity of kfΩ =0 and π is modified, and so the ESPP is

rotated in the xy-plane of the Bloch sphere with a non-constant velo-
city by varying kf. As a further increase to 1, which marks the largest
imbalance between the spin-flipped hopping terms κ1,n = 0, and
κ3,n = 2 sinnθ the Dirac points merge and the gap opens with an edge
state showing the localization feature throughout the entire kf. More-
over, the ESPP σi

	 

of the two bands becomes a sinusoidal form in

Fig. 2d–f, corresponding to a rotation of the ESPP with a constant
velocity. We find a similar change of the ESPP under different choices
of (θ, φ) when a varies from 0 to 1 (see Supplemental Note 8).

The additional spin-flipped hopping term with a ≠0 hybridizes
the bands and consequently modifies the pseudospin of the eigen-
states regardless of the non-Abelian flux (i.e., the values of θ andφ). To
further investigate such a pseudospin rotation phenomenon, we per-
form the numerical simulation of the evolution with a being adiabati-
cally decreased from 1 to 0 in Fig. 3, with the choice ofN = 19 (details of
the simulation is given in Supplemental Note 9).

We choose four different states on the green bandswith kfΩ =π/3,
π/2, 2π/3, and 20π/21, tuned froma = 1 toa = 0with the bandstructures
given in Fig. 2c. When 0⩽ t⩽ 50g−1, we keep a = 1 to excite the desired
eigenstate. After t = 50g−1, a is linearly changed from 1 to 0. One can
find that even though the four states start with different pseudospins,
they all converge to the one with σ2 = 1 at t = 200g−1 (see Fig. 3a–d),
which indicates how the additional spin-flipped hopping term gradu-
ally rotates the pseudospin of the eigenstate. We also show the evo-
lution of the spatial intensity of all frequency modes on each spatial
site in Fig. 3e–h. Despite the rotations in pseudospin, the spatial
intensities are almost unchanged and localized at the edge in Fig. 3e–g.
However, for the case of kfΩ = 20π/21 in Fig. 3h, the state exhibits a
transition starting with an edge state, then to a bulk state, and finally
becoming an edge state located at the other side. Such different
dynamics occur due to the fact of different occupation of choices of
kfΩ =π/3, π/2, 2π/3 and the choice of kfΩ = 20π/21 appearing on dif-
ferent sides of the Dirac point at kfΩ =0.8πwhile one tunes a from 1 to
0 (see Fig. 2c). Therefore, when kf crosses the Dirac point in Fig. 2c, the

edge state crosses through the bulk towards the other edge adiabati-
cally. Note that if the evolution time is too short, the adiabatic
approximation cannot be maintained, resulting in the inefficient
transition to the target eigenstates (see Supplemental Note 9).

Phase transition in the (a, b) plane
One sees that there are two kinds of spin-flipped hopping terms
i sinnθσ2, and a sinnθσ1 in H, while we only tune the lateral one in the
above cases. The independent coupling strengths κ1,n and κ3,n allow us
to make the other one also tunable by manipulating
κ1,n � ða� bÞ sinnθ, κ3,n � ða+ bÞ sinnθwhere b is a real number, and
hence the Hamiltonian H is extended to a more general one H0 with a
modified SLð2,CÞ gauge field A0 (see Supplemental Note 2).

DifferentDiracpoint transitions between the fourthband andfifth
band through changing both parameters a and b are illustrated by the
phase diagram in Fig. 4. One see that there are always four type-I Dirac
points between the fourth and fifth band under an SU(2) gauge field
(line a =0). While for the SL(2,C) gauge field [the (a, b) plane], various
transitions between six different phases are involved, which indicates
the intriguing opportunities in topological physics with SLð2,CÞ
gauge field.

As an example, we show the phase transition from type-I to type-II
Dirac points with a = b fixed, where only the spin-flipped hopping (κ3,n)
between cm,n,− and cm+1,n,+ is allowed, while the other one between cm,n,+

and cm+1,n,− is prohibited (κ1,n =0). For a=0, the model degrades to the
Abelian gauge-field case without the spin-flipped hopping terms, and
two degenerated edge states with opposite ESPP σ3 = ±1 link the Dirac
points (see Fig. 5a). As a slightly increases to 0.1, the corresponding
gauge field becomes non-Abelian, and the degeneracy of the two bands
is lifted. In contrast to the caseswe study in Fig. 2, the ESPP of the bands
changes abruptly to a sinusoidal form, as shown in Fig. 5c, d. If a further
increase to 0.5, one can find that both the position and the tilt of Dirac
cones are changed, which gives the type-II Dirac points (see Fig. 5a and
Supplemental Note 10 for the bandstructures). The ESPP for a = b =0.5
remains the same as the ones for a = b =0.1, which implies the sinu-
soidal varying ESPPs are the result of the balance between the two kinds
of hopping mechanisms associated with a and b in the spin-flipped
hopping terms (see “Methods”). To get a better insight, we consider the
reciprocal space. The term a sinnθσ1 / cos kf (or the other term
ib sinnθσ2 / sin kf ) with corresponding eigenvectors same as σ1 (or
σ2), so the effect of the spin-flipped hopping becomes strongest at
kfΩ =0, π (or kfΩ =0.5π, 1.5π) and vanishes at kfΩ =0.5π, 1.5π (or
kfΩ =0, π). As a consequence of the competition between these two
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mechanisms from spin-flipped hopping terms, the orientation of the
ESPP rotates in the xy-plane as kf varies, which implies one can possibly
have a kf-dependent pseudospin beyond sinusoidal variation by a
delicate design of the spin-flipped hopping terms.

Difference between SL(2, C) and SU(2) gauge fields
To further illustrate the difference between the SL(2, C) gauge field
and the SU(2) gauge field, we consider an Abelian example with
(θ, φ) = (2π/3, π), where the effect of the non-Abelian gauge field is
excluded, and the phase transition process is fully attributed to an
SL(2, C) gauge field. The energy spectrum of the Hamiltonian H is

plotted in Fig. 6a with a varying from 0 to 1. One sees that there is no
gap closing during this process,whichusually denotes the absence of a
topological phase transition. However, theZ2 topological invariant ν is
changed from 1 to 0 (see Supplemental Note 8).

Typical bandstructures are given in Fig. 6a, b with (a, b) = (0, 1)
(topological nontrivial) and (a, b) = (1, 1) (topological trivial). More-
over, we find that such a phase transition occurs immediately once
a ≠0, indicating that the symmetry which protects the nontrivial
topological phase is broken by the introduction of the SL(2,C) gauge
field. Note that for an SU(2) gauge field, the hopping termU is an SU(2)
matrix, and the spin-flipped hopping terms satisfy an anti-conjugate
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relation U12 = � U*
21

45, while the variation of the parameter a breaks
this condition. To further investigate such a phase transition process,
we now define a and b as two complex numbers a= jajeiρa b= jbjeiρb .
The phase diagram for ∣a∣ = ∣b∣ = 1 is plotted in Fig. 6d. The blue region
(topological trivial phase with ν =0) covers most of the area in the
phase diagram, and the nontrivial phase with ν = 1 occurs at
ρa = ρb ±0.5π and ρa = ρb ± 1.5π, denoted by the yellow lines. Similar
phase diagrams are also found for ∣a∣ ≠ ∣b∣ as shown in Fig. 6e, f.
Moreover, in the (ρa, ρb) plane, the corresponding bandstructure
always shows an insulator phase except for (ρa, ρb) = (0, ± 0.5π) and
(ρa, ρb) = (π, ± 0.5π) denoted by the red dots, where the gaps close and
four-fold band-crossing points appear (e.g., Fig. 6g). Typical band-
structures for the topological nontrivial phase and the topological
trivial phase are given in Fig. 6h, i with (ρa, ρb) = (0.1π, 0.6π) and
(ρa, ρb) = (0, 0.6π). One can rewrite the condition for the topological
nontrivial phase as ∣κ1,n∣ = ∣κ3,n∣ or equivalently ∣U12∣ = ∣U21∣. In other
words, the symmetry that protects the nontrivial topological phase
under an SU(2) gauge field is broken by the introduction of an SL(2,C)
gauge field, but it can be retrieved in amoregeneralized formunder an
SL(2, C) gauge field.

Discussion
Our proposal can be feasible for experimental demonstrations. The
fiber optic system could be a potential candidate as the combination
of photonic molecules and synthetic frequency dimension46–48 have
already been demonstrated in experiments, which provide the
building block of our theoretical proposal. Specifically, for a fiber-
based experimental setup with a cavity free spectral range ~10MHz
and cavity length ~10m, the required amplitude of the voltage signal
sent to the EOMs is ~1V46,48. The quality factor of the cavities ideally
desires an order of magnitude ~109 to avoid the over-broadening of
bands, which is challenging, but can be potentially doable with the
development of state-of-art photonic technologies48,49 (see Supple-
mental Note 11). A precise control on the modulation depth and
frequency of the EOMs is required to minimize the distortion of the
measured bandstructure (see Supplemental Note 12). The disorder in
the coupling between the rings can lead to the inefficient excitation
of the edge state in experimental observation (see Supplemental
Note 13). On the other hand, in the field of integrated photonics, the
photonic molecule41,50 and synthetic frequency dimension51–53 have
been individually experimentally demonstrated for on-chip ring

resonators. Moreover, a recent experiment54 also shows the possi-
bility to introduce synthetic frequency dimension in a one-
dimensional ring resonator array. All these state-of-art nanopho-
tonic technologies provide the potential to realize our proposal in
the near future.

In summary, we extend SU(2) non-Abelian gauge fields to the
SLð2,CÞ regime, and give a theoretical proposal for simulating
topological materials under such a gauge field. The underlying phy-
sics is unveiled in two aspects: various Dirac phase transitions
beyond the conventional SU(2) gauge field and the transition of the
orientation of the ESPP. Moreover, the extension to SL(2, C) gauge
field unveils a more generalized symmetry that protects the non-
trivial Z2 topological phase. We expect the proposed system to be a
unique and versatile platform for studying topological physics with
non-Abelian gauge fields. Future studies may include the employ-
ment of the non-Abelian topological charge55,56, which describes the
topology ofmultiband systems, offering a useful tool to elucidate the
nature of the phase transition discussed. The proposed system may
also find potential applications on topological insulator lasers in
synthetic space-frequency dimensions57,58 from pseudospin manip-
ulations via introducing an SL(2,C) gauge field, which provides an
extra degree of freedom to modify the spectrotemporal shape of the
output pulses.

Methods
Bloch Hamiltonian in the reciprocal space
We assume θ satisfies θ = 2π/P, where P is an integer, and therefore,
the system can still maintain periodicity in both the spatial and fre-
quency dimensions. For the choice of θ = 2π/3, the lattice has a per-
iod of 2π/θ = 3 along the spatial axis, as the hopping along the
frequency dimension (associated with θ) depends on the spatial
index n. The Bloch Hamiltonian in the reciprocal space is then given
by (detailed derivation for other choices of θ is given in the Sup-
plemental Note 1)
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Fig. 6 | Topological phase transition under SL(2, C) gauge fields. a Energy
spectrum of the Hamiltonian Hk. b, c Bandstructures of the Hamiltonian Hk with
(a, b) = (0, 1) and (a, b) = (1, 1).d–f Phase diagrams in the (ρa, ρb) plane for themodel
with different choices of ∣a∣ and ∣b∣, where the yellow lines denote the non-trivial

phase with a Z2 topological invariant ν = 1, while the blue regions correspond to a
topological trivial phase with ν =0. Red dots denote the values of ρa and ρb when
four-fold band-crossing points appear.g–iThe corresponding band structureswith
∣a∣ = ∣b∣ = 1 and a different choice of ρa and ρb.
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~Hk =
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where Bjðkf ,θÞ=2 cos jθ cos kfΩ, Cjðkf ,θÞ=2a sin jθ cos kfΩ� 2i sin
jθ sin kfΩ, and j = 1, 2, 3 being the index of the sites in the reciprocal
space. By diagonalizingHk, one can obtain the bandstructure. One can
also rewrite ~Hk in spin-orbit coupling form

~Hk =
D1ðkf , θÞ eiφσ3e�ikxd e�iφσ3eikxd

e�iφσ3eikxd D2ðkf , θÞ eiφσ3e�ikxd

eiφσ3e�ikxd e�iφσ3eikxd D3ðkf , θÞ

0
B@

1
CA, ð8Þ

where Djðkf ,θÞ= 2 cos jθ cos kfΩσ0 + 2a sin jθ cos kfΩσ1 + 2 sin jθ sin
kfΩσ2 following the form of typical spin-orbit terms59. The last two
terms inDj(kf, θ) correspond to the two different spin-flipped hopping
mechanisms.

Quantitative analysis on the ESPP
To quantitatively analyze the change of pseudospin behaviors origi-
nating from the competition between the two spin-flipped hopping
mechanisms. We consider a simplified model, which also exhibits the
same pseudospin behaviors as H. The Hamiltonian is read as

Hs =
X
m

cym+ 1, + c
y
m+ 1,�

� � cosθ 0

0 cosθ

� �
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� �
+H:c:,

ð9Þ

where the second and third terms correspond to the two hopping
mechanisms, respectively. One can obtain the eigenstate of the
Hamiltonian by diagonalizing Hs

∣ψ


=

1
jψj ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos k � ib sink
a cos k + ib sink

r
, 1

 !T

, ð10Þ

where ∣ψ∣ is the normalization factor. One can further obtain the
pseudospin projection σi

	 

. We take σ1

	 

as an example

σ1

	 

= ψ+ jσ1jψ+

	 

=

1

jψj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos k � ib sin k
a cos k + ib sin k

r
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos k + ib sink
a cos k � ib sink

r !
:

ð11Þ
We first consider the two special cases. For a =0 and b = 1, σ1

	 

=0; for

a = 1 andb = 1, σ1

	 

= cos k, which are in accordancewithourmodel. To

further illustrate the competition between the two hopping mechan-
isms,we consider a perturbative case, whereb = 1 and a≪ 1. In this case

σ1

	 

=

1

jψj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

�2ib sink
a cos k + ib sin k

r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2ib sin k
a cos k � ib sink

r !
, ð12Þ

One sees that σ1

	 

depends on the values of a cos k and b sink. For

k =0 and k =π, the nominator parts are vanished as b sin k =0, so
σ1

	 

= 1, while for k≫0, σ1

	 
! 0 as a cos k ! 0. Therefore, there are
two peaks located at k =0 and k =π for σ1

	 

, which can also be found in

the Supplemental Note 6.

Data availability
The data generated in this study have been deposited in the Figshare
database under accession code [https://doi.org/10.6084/m9.figshare.
29714342].

Code availability
The codes used to process the data generated in this study are avail-
able in Figshare under accession code [https://doi.org/10.6084/m9.
figshare.29714342].

References
1. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium:

artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83,
1523 (2011).

2. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-
induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77,
126401 (2014).

3. Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge
fields in materials and engineered systems. Comptes Rendus Phys.
19, 394 (2018).

4. Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and
global formulation of gauge fields. Phys. Rev. D. 12, 3845 (1975).

5. Wilczek, F. & Zee, A. Appearance of gauge structure in simple
dynamical systems. Phys. Rev. Lett. 52, 2111 (1984).

6. Horváthy, P. Non-abelian Aharonov-Bohm effect. Phys. Rev. D. 33,
407 (1986).

7. Yan, Q. et al. Non-abelian gauge field in optics. Adv. Opt. Photonics
15, 907 (2023).

8. Yang, Y. et al. Non-abelian physics in light and sound. Science 383,
eadf9621 (2024).

9. Zhang, P.-M. & Horvathy, P. Isospin precession in non-abelian
Aharonov-Bohm scattering. Preprint at arXiv https://doi.org/10.
48550/arXiv.2402.13883 (2024).

10. Osterloh, K., Baig, M., Santos, L., Zoller, P. & Lewenstein, M. Cold
atoms in non-abelian gauge potentials: From theHofstadter “moth”
to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005).

11. Satija, I. I., Dakin, D. C. & Clark, C. W. Metal-insulator transition
revisited for cold atoms in non-abelian gauge potentials. Phys. Rev.
Lett. 97, 216401 (2006).

12. Goldman, N., Kubasiak, A., Gaspard, P. & Lewenstein, M. Ultracold
atomic gases in non-abelian gauge potentials: the case of constant
Wilson loop. Phys. Rev. A 79, 023624 (2009).

13. Goldman,N. et al. Non-abelian optical lattices: anomalous quantum
hall effect and dirac fermions. Phys. Rev. Lett. 103, 035301 (2009).

14. Goldman, N. et al. Realistic time-reversal invariant topological
insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010).

15. Hauke, P. et al. Non-abelian gauge fields and topological insulators
in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

16. Burrello, M., Fulga, I., Alba, E., Lepori, L. & Trombettoni, A. Topolo-
gical phase transitions driven by non-abelian gauge potentials in
optical square lattices. Phys. Rev. A 88, 053619 (2013).

17. Kosior, A. & Sacha, K. Simulation of non-abelian lattice gauge fields
with a single-component gas. Europhys. Lett. 107, 26006 (2014).

18. Lepori, L., Fulga, I. C., Trombettoni, A. & Burrello, M. Double Weyl
points and fermi arcs of topological semimetals in non-abelian
gauge potentials. Phys. Rev. A 94, 053633 (2016).

19. Yang, Y., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Non-abelian
generalizations of the Hofstadter model: spin–orbit-coupled but-
terfly pairs. Light.: Sci. Appl. 9, 177 (2020).

20. Di Liberto, M., Goldman, N. & Palumbo, G. Non-abelian Bloch
oscillations in higher-order topological insulators.Nat. Commun. 11,
5942 (2020).

21. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental
observation of the spin-Hall effect in a two-dimensional spin-orbit

Article https://doi.org/10.1038/s41467-025-65214-z

Nature Communications |        (2025) 16:10166 7

https://doi.org/10.6084/m9.figshare.29714342
https://doi.org/10.6084/m9.figshare.29714342
https://doi.org/10.6084/m9.figshare.29714342
https://doi.org/10.6084/m9.figshare.29714342
https://doi.org/10.48550/arXiv.2402.13883
https://doi.org/10.48550/arXiv.2402.13883
www.nature.com/naturecommunications


coupled semiconductor system. Phys. Rev. Lett. 94,
047204 (2005).

22. Ruseckas, J., Juzeliūnas, G., Öhberg, P. & Fleischhauer, M. Non-
abelian gauge potentials for ultracold atoms with degenerate dark
states. Phys. Rev. Lett. 95, 010404 (2005).

23. Abdumalikov Jr, A. A. et al. Experimental realization of non-abelian
non-adiabatic geometric gates. Nature 496, 482 (2013).

24. de Juan, F. Non-abelian gauge fields and quadratic band touching
in molecular graphene. Phys. Rev. B 87, 125419 (2013).

25. Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I.
Second Chern number of a quantum-simulated non-abelian Yang
monopole. Science 360, 1429 (2018).

26. Ye, W. et al. Photonic hall effect and helical zitterbewegung in a
synthetic weyl system. Light.: Sci. Appl. 8, 49 (2019).

27. Liu, X.-J., Law, K. T. &Ng, T. K. Realization of 2d spin-orbit interaction
and exotic topological orders in cold atoms. Phys. Rev. Lett. 112,
086401 (2014).

28. Wang, Z.-Y. et al. Realization of an ideal Weyl semimetal band in a
quantum gas with 3d spin-orbit coupling. Science 372, 271 (2021).

29. Li, C.-H. et al. Bose-Einstein condensate on a synthetic topological
Hall cylinder. PRX Quantum 3, 010316 (2022).

30. Liang, Q. et al. Chiral dynamics of ultracold atoms under a tunable
SU (2) synthetic gauge field. Nat. Phys. 20, 1738 (2024).

31. Wu, J. et al. Non-abelian gauge fields in circuit systems. Nat. Elec-
tron. 5, 635 (2022).

32. Qian, L., Zhang, W., Sun, H. & Zhang, X. Non-abelian topological
bound states in the continuum. Phys. Rev. Lett. 132, 046601 (2024).

33. Cheng, D. et al. Non-abelian lattice gauge fields in photonic syn-
thetic frequency dimensions. Nature 637, 52 (2025).

34. Yuan, L., Lin,Q., Xiao,M.& Fan, S. Synthetic dimension in photonics.
Optica 5, 1396 (2018).

35. Lustig, E. & Segev, M. Topological photonics in synthetic dimen-
sions. Adv. Opt. Photonics 13, 426 (2021).

36. Ehrhardt, M., Weidemann, S., Maczewsky, L. J., Heinrich, M. & Sza-
meit, A. A perspective on synthetic dimensions in photonics. Laser
Photonics Rev. 17, 2200518 (2023).

37. Hazzard, K. R. & Gadway, B. Synthetic dimensions. Phys. Today 76,
62 (2023).

38. Yu, D. et al. Comprehensive review of developments of synthetic
dimensions. Photonics Insights 4, R06 (2025).

39. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals
in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

40. Bayer, M. et al. Optical modes in photonic molecules. Phys. Rev.
Lett. 81, 2582 (1998).

41. Zhang, M. et al. Electronically programmable photonic molecule.
Nat. Photonics 13, 36 (2019).

42. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topo-
logical edge states in silicon photonics. Nat. Photonics 7,
1001 (2013).

43. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement
of topological invariants in a 2d photonic system.Nat. Photonics 10,
180 (2016).

44. Dutt, A. et al. A single photonic cavity with two independent phy-
sical synthetic dimensions. Science 367, 59 (2020).

45. Cheng, D., Wang, K. & Fan, S. Artificial non-abelian lattice gauge
fields for photons in the synthetic frequency dimension. Phys. Rev.
Lett. 130, 083601 (2023).

46. Li, G. et al. Direct extraction of topological Zak phase with the
synthetic dimension. Light.: Sci. Appl. 12, 81 (2023).

47. Sridhar, S. K., Ghosh, S., Srinivasan, D., Miller, A. R. & Dutt, A.
Quantized topological pumping in Floquetÿsynthetic dimensions
with a driven dissipative photonic molecule. Nat. Phys. 20,
843–851 (2024).

48. Pellerin, F., Houvenaghel, R., Coish, W., Carusotto, I. & St-Jean, P.
Wave-function tomography of topological dimer chains with long-
range couplings. Phys. Rev. Lett. 132, 183802 (2024).

49. Englebert, N. et al. Bloch oscillations of coherently driven
dissipative solitons in a synthetic dimension. Nat. Phys. 19,
1014 (2023).

50. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules.
Nat. Photonics 15, 305 (2021).

51. Hu, Y., Reimer, C., Shams-Ansari, A., Zhang, M. & Loncar, M. Reali-
zation of high-dimensional frequency crystals in electro-optic
microcombs. Optica 7, 1189 (2020).

52. Balčytis, A. et al. Synthetic dimensionband structures on aSiCMOS
photonic platform. Sci. Adv. 8, eabk0468 (2022).

53. Javid, U. A. et al. Chip-scale simulations in a quantum-correlated
synthetic space. Nat. Photonics 17, 883 (2023).

54. Dikopoltsev, A. et al. Topological insulator quantum cascade laser
in synthetic space: towards a realization, in European Quantum
Electronics Conference (Optica Publishing Group, 2023).

55. Bouhon, A. et al. Non-abelian reciprocal braiding ofWeyl points and
its manifestation in zrte. Nat. Phys. 16, 1137 (2020).

56. Guo, Q. et al. Experimental observation of non-abelian topological
charges and edge states. Nature 594, 195 (2021).

57. Yang, Z. et al. Mode-locked topological insulator laser utilizing
synthetic dimensions. Phys. Rev. X 10, 011059 (2020).

58. Dong, Z., Chen, X., Dutt, A., & Yuan, L. Topological dissipative
photonics and topological insulator lasers in synthetic time-
frequency dimensions. Laser & Photonics Reviews, 2300354
(2024).

59. Barnett, R., Boyd, G. R. & Galitski, V. Su (3) spin-orbit coupling
in systems of ultracold atoms. Phys. Rev. Lett. 109, 235308
(2012).

Acknowledgments
The research was supported by the National Key R&D Program of China
(No. 2023YFA1407200), the National Natural Science Foundation of
China (12122407 and 12192252).

Author contributions
Z.D. initiated the idea and performed the simulation. Z.D. and L.Y. dis-
cussed the results. Z.D. and L.Y. wrote the draft. Z.D., X.C., and L.Y.
revised the manuscript. L.Y. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-65214-z.

Correspondence and requests for materials should be addressed to
Luqi Yuan.

Peer review information :Nature Communications thanks Gui-Geng Liu,
Yan-Qing Zhu, and the other, anonymous, reviewers for their
contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-025-65214-z

Nature Communications |        (2025) 16:10166 8

https://doi.org/10.1038/s41467-025-65214-z
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-65214-z

Nature Communications |        (2025) 16:10166 9

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	SL(2  C) non-Abelian gauge fields in a photonic molecule array
	Results
	Model
	Annihilation of Dirac points and rotation of pseudospin
	Phase transition in the (a, b) plane
	Difference between SL(2, C) and SU(2) gauge fields

	Discussion
	Methods
	Bloch Hamiltonian in the reciprocal space
	Quantitative analysis on the ESPP

	Data availability
	Code availability
	References
	Acknowledgments
	Author contributions
	Competing interests
	Additional information




