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Engineering the topological properties of the system has been a longstanding
subject in physics. Here, we propose a scheme to simulate topological mate-
rials with a non-Abelian gauge field in synthetic space-frequency dimensions
where the symmetry between spin-flipped hoppings can be levitated by using
coupled photonic molecules under dynamic modulations. The frequency-split
supermodes in these photonic molecules can serve the pseudospin degree of
freedom, which can further be connected along the frequency axis in an
independent way, offering the unique opportunity to explore topological
physics with imbalanced spin-flipped hoppings leading to a complex gen-
eralization of the conventional SU(2) non-Abelian gauge field, i.e., an SL(2, C)
gauge field. By varying the spin-flipped hopping terms, we theoretically show
the existence of a variety of Dirac semimetal transitions and the rotation of the
pseudospin projection for the edge states throughout the Brillouin zone. Our
proposal is experimentally feasible and therefore provides a versatile platform

for the study of topological materials under non-Abelian gauge fields in

photonics.

Exploring and controlling novel phases of matter has been a prominent
subject in physics. Apart from variation of an external parameter such
as temperature, pressure, or magnetic field, a synthetic gauge field has
been proven to be a powerful tool in constructing and manipulating
novel phases of matter, especially for neutral particle'™. In particular,
the non-Abelian gauge field*®, manifest in a wide range of distinct
fields in physics such as high-energy physics, condensed-matter phy-
sics and electromagnetism, offering an effective way to synthesize
exotic topological phases'®?°. Such a kind of gauge field is associated
with the concept of the non-Abelian group in mathematics, as they
hold non-commutative (non-Abelian) matrix-form components, which
provides a framework for describing the statistics of spinful particles.

It has been growing interest in synthesizing non-Abelian gauge
fields in diverse platforms. Compared to continuum systems? %, a non-
Abelian gauge field in a lattice model has only been demonstrated in a
few platforms, such as ultracold atoms*~°, electrical circuits®** and
photonic systems®. However, these works focus on the realization of
an SU(Q2) gauge field, while a non-Abelian gauge field does not

necessarily belong to the SU(2) group. For example, the complex
generalization of the SU(2) group [i.e., the SL(2, C) group] can also
fulfill the requirement of non-commutativity. This leads to a question of
whether an SL(2, C) gauge field can result in more fruitful topological
phase transition phenomena and how such a gauge field can be con-
structed in experiments. However, for the existing scheme, the spin-
flipped hopping terms for different spins are usually not independent,
namely they are generated by the same light fields/elements”*, hence
lacking flexibility. This poses challenges in realizing the SL(2, C) gauge
field, which requires a flexible tailoring to achieve independent spin-
flipped hopping for different spins. Nevertheless, recent advance in
constructing non-Abelian lattice models in photonic synthetic fre-
quency dimensions®, shows great potential in tackling such a task and
exploring the underlying physics of an SL(2, C) gauge field.

Here, we generalize the SU(2) non-Abelian gauge field (linear
superposition of Pauli matrices with real coefficients) to an SL(2, C) one
featuring non-Hermitian matrix-form components (complex coeffi-
cients), which can be realized by introducing imbalanced spin-flipped
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hoppings to the Hamiltonian model in synthetic frequency
dimension®*%, Such kind of gauge field results in various kinds of
transitions of Dirac semimetals®, including semimetal-insulator transi-
tion, different Dirac-type semimetal transition, annihilation and gen-
eration of Dirac points. Furthermore, the imbalanced spin-flipped
hopping leads to the intrinsic competition between two hopping
mechanisms that results in the transition of the orientation of the edge
state projection on the pseudospins, changing from nearly constant to
a sinusoidal variation during this process. Moreover, we find that the
nontrivial Z, topological phase can be protected by a more generalized
symmetry under the SL(2, C) gauge field. Our work offers the first
experimentally feasible proposal to study the underlying physics of
SL(2, C) gauge fields, which enriches the context of topological physics.

Results

Model

We consider the model composed of a one-dimensional ring resonator
array including resonant site rings (green) and off-resonant link rings
(yellow) in Fig.1a. Each site ring supports resonant modes at fre-
quencies w,, = W + mQ, where w, is the reference frequency and Q is
the frequency spacing. A pair of two coupled site rings (labeled by A
and B) can form a photonic molecule*®*, where each resonant mode at
W, hybridizes into symmetric and antisymmetric supermodes at
Wm+=Wnty. Here, y is the coupling strength between the two rings.
Electro-optic modulators (EOMs) are placed in ring A (or B) in the n-th
photonic molecule at modulation form J*/B(¢)= +2k; , cos(Q —
2))t+2K, , COSQt +2K; , COS(Q+2))t where Ky, K, and ks, are
spatially-dependent modulation strengths. The dynamical modulation
on the light field by the EOMs produces sidebands from the original
frequency, determined by the modulation frequencies of the mod-

different phase from that of light propagating from right to left (see
Supplemental Note 1). The additional propagation phases are expres-
sed by ;. > @+ @ for symmetric and antisymmetric supermodes,
with the effective +(-)a,, .. for the connection from left (right) to right
(left) photonic molecules with a multiple of 2m**. Here,
(Pm @) = (w,,, £ y) originates from the propagation phase accumula-
tion for all supermodes, where we choose ¢,, to be multiples of 2ir and
hence a=ay,.=+@ for each pair of supermodes.

By further assuming all coupling strengths are relatively small and
applying the rotating wave approximation, we obtain the Hamiltonian
of the lattice (see Fig. 1b) with n (m) being the space (frequency) index
in the synthetic space (detailed deviation of the Hamiltonian is pro-

vided in Supplemental Note 1):
Kyn K3 n Cm,n, +
H= (CT c 7)( \ >< ., >
;”:l m+1,n,+“m+1,n, Kl.n Kz,n Cm,n,— (1)
ip 0 C
i + € ‘m,n, +

+g<cm,n+l,+cm,n+l,>< 0 e"‘/’><cm,n,_>+H'C"
where c,*,,y,,, + (Cmn+) is the creation (annihilation) operator of the
symmetric or antisymmetric supermode at w,, . for the n-th photonic
molecule. Each pair of the symmetric and antisymmetric supermodes

can be treated as a pair of pseudospins. The Hamiltonian can be
rewritten by

H=H,+H, )

Jr
Ho= Z(cm+l,n,+
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ulation signal /®(¢), and hence connects different frequency modes in n,m mn,—
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0 +2y, respectively (details are provided in the Supplemental Note 1). e Cmnet - >(COS 9o *isinQo3) Conn, — tHe,
We assume the spatial spacing between nearby photonic mole- 3)
cules as d, where off-resonant link rings are added to induce spatial
coupling g***’. Note that we introduce a small vertical shift on the
center of link rings with respect to the center of site rings (see Fig. 1a), H, = (Cjnﬂ L. )a sinnfo, (Cm,n, + > +He., @)
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Fig. 1| The proposed scheme for constructing a two-dimensional non-Abelian
lattice gauge field by a photonic molecule array. a Schematic view of the system
composed of coupled ring resonators being dynamically modulated by EOMs. The

hybridization of the modes in two individual rings causes a frequency splitting
regarding to the original resonant frequency w,,. b Such a system can be mapped to
a lattice supporting the two-dimensional Hamiltonian.
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where 0o, 01, 0, and o3 are Pauli matrices, k;, = (a—1)sinn6,
Ky, =cosnb, k3 , = (a+1)sinnb, and g=1 (i.e., the Hamiltonian is
dimensionless and all coupling strengths can be scaled versus g, and
a€R, 6€]0, 2n]). Importantly, the parameter a represents the
imbalance between the pseudospin-dependent spin-flipped hopping
term, namely, |k, ,| — |k3 ,| =2asinn@ (for 0 <a<1), which modifies
the hopping along the frequency dimension from an SU(2) type of
matrix to an SL(2, C) one, and correspondingly marks the appearance
of an SL(2, C) gauge potential. The corresponding non-Abelian gauge
field is written by

Ao { (Ag, 1, Ay) = (1(8)0, — ian(6)o,, po3) )

| A, A0 = (n(B)0, +ian(6)oy, pos)

where Ag+ (Ag.) is the gauge field component along the positive

(negative) direction along the frequency axis, 7(6) = ;/1—log i?fs',’zgig

and B=1/(a? — D)sin’né. One can see the component A¢+ (4¢,) gives

the hopping that mixes the pseudospins along frequency dimension,
while the component A, provides an opposite hopping phase + ¢
along spatial dimension. In particular, A does not belong to an SU(2)
gauge potential when a # O due to the appearance of the non-
Hermitian matrix —ian(6)o; in Ag.+ (Ag ), instead, it refers to an SL(2, C)
gauge potential, which is a complex generalization of the SU(2) one
(see Supplemental Note?2). Note that the asymmetric gauge field
component A¢ 1 (Ag,) preserves the Hermiticity of the Hamiltonian.

Annihilation of Dirac points and rotation of pseudospin

We investigate how the bandstructure changes when a#0, for the
Hamiltonian under the non-Abelian magnetic flux (6, @) = (2nr/3, n/2)
(so the lattice has the period of 2m/6=3 along the spatial axis). In
Fig. 2a, b, we show the band structures of H with a=0 and a=1 (see
“Methods” for the Bloch Hamiltonian in the reciprocal space), where k¢
(ky) is the quasi-momentum reciprocal to the frequency (space) axis
and ¢is the quasienergy. The six bands are separated, labeled from 1-6,

which reflects the non-Abelian nature of the gauge field (see Supple-
mental Note3). When a=0, there are four band-crossing points
between band 4 and band 5 in Fig.2a, which refer to type-l Dirac
points*. However, when a =1, there is only a trivial gap between band 4
and band 5 in Fig. 2b, indicating a semimetal-insulator transition. Dif-
ferent Dirac-type semimetal transition and topological-normal insu-
lator transition can also be presented if one chooses different flux
(6, ) (see Supplemental Note 4).

Properties of edge states with a spatial open boundary condition
for N =31 sites are investigated. We define a quantity A = 7% OIMUAL
to characterize the localization amplitude of an eigenstate v on the
edge, where n, =1 or 31 labels one edge. Furthermore, we define the
edge-state pseudospin projection (ESPP) as (0;) = Un, 10|Uy, ), which
partially reflects the changes in the spin-orbit coupling of the Hamil-
tonian H.

When a = 0, the Dirac points in Fig. 2a are located at k{2 = 0.8 and
1.2m. There are four bands that support large localization A for a range
of kg, indicating the corresponding edge localization (see Fig.2d),
where two of them (labeled in blue and red) are merged into the upper
bulk bands for k¢ out of two Dirac points and the other two (labeled in
green and yellow) belong to edge states. Two dips in the curves of A
appear in the vicinity of the Dirac points as bulk bands close into the
degeneracy at the Dirac points, so edge modes do not hold the loca-
lization feature at the two dips (see Supplemental Note 5). The dis-
tribution of the pseudospin for the upper blue band and lower green
band is given in Fig. 2e, f, respectively. The upper red band (bottom
yellow band) has the opposite distribution of the ESPP (o;) over the
entire k¢ as the one for the upper blue band (bottom green band). The
ESPP (0;) for these two bands is nearly a constant with respect to k, so
the ESPP is pinned at the y-axis in the Bloch sphere with k¢ varying,
except for a sudden jump to the z-axis when k{2 =0 and m due to the
vanishing of the spin-orbit coupling term o,k; (see Supplemental
Note 6). As a increases, the Dirac points move closer to each other,
then merge at about a = 0.55, and finally vanish due to their opposite
Berry curvature (see Supplemental Note 7), resulting in gap opening,
as illustrated in Fig. 2c. The additional spin-flipped hopping (i.e., the

a c 4 a=0 a=0.55 a=1
3.5 | | Lo | | | | \: | | I |
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Fig. 2 | The annihilation of the Dirac points with the changes of the localization
features at the edge and the variation of ESPP. Bandstrucutre of the model H in
Eq. (2) by varying a from (a) a =0 to (b) a=1. Red numbers in a denote the band

labels. ¢ Projected bandstructure with different strengths of the spin-flipped hop-
ping a. Red dashed lines denote the position of the Dirac points, which correspond

to k{2 =0.8m, 1.2 and kiQ = m, respectively. Blue dashed lines denote the corre-
sponding momenta in Fig. 3. d The quantity A for the localization of the edge states.
The colors of the lines are in accordance with the colored bands in (c). e, fESPP <a,->
of the blue band and green band in (c), respectively.
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term with a#0) also causes the hybridization between green and
yellow bands and the hybridization between blue and red bands (see
Supplemental Note 6), where the former hybridization results in the
monomorphic edge band and the latter one pushes one of the
resulting band into the upper bulk (so the red band is not shown for
a#0). One can see, at a=0.55 (Fig. 2c), the Dirac points get close to
each other near kQ=m, and A of the edge state is nearly O in the
vicinity of k(Q = m. When a # 0 and such hybridization occurs, the ESPP
(0;) at the vicinity of k£2=0 and m is modified, and so the ESPP is
rotated in the xy-plane of the Bloch sphere with a non-constant velo-
city by varying k¢ As a further increase to 1, which marks the largest
imbalance between the spin-flipped hopping terms k;,=0, and
K3,, =2sin nf the Dirac points merge and the gap opens with an edge
state showing the localization feature throughout the entire k;. More-
over, the ESPP (o;) of the two bands becomes a sinusoidal form in
Fig. 2d-f, corresponding to a rotation of the ESPP with a constant
velocity. We find a similar change of the ESPP under different choices
of (6, ¢) when a varies from O to 1 (see Supplemental Note 8).

The additional spin-flipped hopping term with a# 0O hybridizes
the bands and consequently modifies the pseudospin of the eigen-
states regardless of the non-Abelian flux (i.e., the values of 8 and ¢). To
further investigate such a pseudospin rotation phenomenon, we per-
form the numerical simulation of the evolution with a being adiabati-
cally decreased from 1to O in Fig. 3, with the choice of N =19 (details of
the simulation is given in Supplemental Note 9).

We choose four different states on the green bands with k2 = /3,
11/2,21/3, and 207/21, tuned from a =1to a = 0 with the bandstructures
given in Fig. 2c. When 0 <t <50g, we keep a =1 to excite the desired
eigenstate. After t=50g™, a is linearly changed from 1 to 0. One can
find that even though the four states start with different pseudospins,
they all converge to the one with 0,=1 at t=200g" (see Fig.3a-d),
which indicates how the additional spin-flipped hopping term gradu-
ally rotates the pseudospin of the eigenstate. We also show the evo-
lution of the spatial intensity of all frequency modes on each spatial
site in Fig.3e-h. Despite the rotations in pseudospin, the spatial
intensities are almost unchanged and localized at the edge in Fig. 3e-g.
However, for the case of k{2=20m/21 in Fig.3h, the state exhibits a
transition starting with an edge state, then to a bulk state, and finally
becoming an edge state located at the other side. Such different
dynamics occur due to the fact of different occupation of choices of
keQ=m/3, /2, 2m/3 and the choice of kg2 =20m/21 appearing on dif-
ferent sides of the Dirac point at kg2 = 0.8 while one tunes a from 1to
0 (see Fig. 2c). Therefore, when k¢ crosses the Dirac point in Fig. 2c, the

edge state crosses through the bulk towards the other edge adiabati-
cally. Note that if the evolution time is too short, the adiabatic
approximation cannot be maintained, resulting in the inefficient
transition to the target eigenstates (see Supplemental Note 9).

Phase transition in the (a, b) plane

One sees that there are two kinds of spin-flipped hopping terms
isin nfo,, and asin nfo; in H, while we only tune the lateral one in the
above cases. The independent coupling strengths k; , and k3 , allow us
to make the other one also tunable by manipulating
Ky, = (a—Db)sinnb, k3 , = (a+b)sinnd where b is a real number, and
hence the Hamiltonian H is extended to a more general one H’ with a
modified SL(2, C) gauge field A’ (see Supplemental Note 2).

Different Dirac point transitions between the fourth band and fifth
band through changing both parameters a and b are illustrated by the
phase diagram in Fig. 4. One see that there are always four type-I Dirac
points between the fourth and fifth band under an SU(2) gauge field
(line a = 0). While for the SL(2, C) gauge field [the (a, b) plane], various
transitions between six different phases are involved, which indicates
the intriguing opportunities in topological physics with SL(2, C)
gauge field.

As an example, we show the phase transition from type-I to type-Il
Dirac points with a = b fixed, where only the spin-flipped hopping (x5 )
between Cy, ,, - and Cp41 4.+ is allowed, while the other one between ¢, , +
and Cpyq,n - is prohibited (x3,, = 0). For a =0, the model degrades to the
Abelian gauge-field case without the spin-flipped hopping terms, and
two degenerated edge states with opposite ESPP g3 = +1 link the Dirac
points (see Fig.5a). As a slightly increases to 0.1, the corresponding
gauge field becomes non-Abelian, and the degeneracy of the two bands
is lifted. In contrast to the cases we study in Fig. 2, the ESPP of the bands
changes abruptly to a sinusoidal form, as shown in Fig. 5c, d. If a further
increase to 0.5, one can find that both the position and the tilt of Dirac
cones are changed, which gives the type-Il Dirac points (see Fig. 5a and
Supplemental Note 10 for the bandstructures). The ESPP for a=b=0.5
remains the same as the ones for a=>b=0.1, which implies the sinu-
soidal varying ESPPs are the result of the balance between the two kinds
of hopping mechanisms associated with a and b in the spin-flipped
hopping terms (see “Methods”). To get a better insight, we consider the
reciprocal space. The term asinnfo; « cosk; (or the other term
ibsinnfo, « sink;) with corresponding eigenvectors same as o; (or
03), so the effect of the spin-flipped hopping becomes strongest at
kiQ=0, m (or kQ=0.5m, 1.5m) and vanishes at k:Q=0.5m, 1.5 (or
kiQ=0, m). As a consequence of the competition between these two

a Kk QI=1/3 b Kk QIm=1/2 c Kk QI=2/3 d K, QITr=20/21
1
T o
-1
19 1
S _
=}
3 g
g :
Qo <
2
1 0
0 100 200 O 100 200 0 100 200 O 100 200
Evolution time t/g! (o)) () — (o))

Fig. 3 | Adiabatic evolution of ESPP and the intensity distribution for different
states. a-d Temporal evolutions with a tuned from 1 to O adiabatically of the
pseudospin (g;) of the states with different k. Violet regions show the time interval

with a being kept as 1 to excite the desired eigenstate. e-h Temporal evolution of
the total intensity over all frequency modes versus each spatial site n with different
choices of k.
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Fig. 4 | Various phase transitions in the (a, b) plane. Phase diagram under different choices of the parameters a and b. Bandstructures of the model H’ for different (a, b)

in spin-flipped hopping terms with (0, @) = (2n/3, n/2).

glg 0

d band

20

Fig. 5 | Transition from type-I Dirac points to type-Il Dirac points with the
changes with the localization features at the edge and the variation of ESPP.
a Projected bandstructure with different strengths of the spin-flipped hopping a and
b. Red dashed lines denote the position of the Dirac points. Inserted figures show the

1 20 1 2
k. Qlm

bandstructure at the vicinity of the Dirac points with the periodic boundary con-
dition taken in both space and frequency dimensions. b The quantity A for the
localization of the edge states. The colors of lines are in accordance with the colored
bands in (a). ¢, d ESPP (0;) of the blue band and green band in (a), respectively.

mechanisms from spin-flipped hopping terms, the orientation of the
ESPP rotates in the xy-plane as k; varies, which implies one can possibly
have a krdependent pseudospin beyond sinusoidal variation by a
delicate design of the spin-flipped hopping terms.

Difference between SL(2, C) and SU(2) gauge fields

To further illustrate the difference between the SL(2, C) gauge field
and the SU(2) gauge field, we consider an Abelian example with
(6, @) =(2m/3, n), where the effect of the non-Abelian gauge field is
excluded, and the phase transition process is fully attributed to an
SL(2, C) gauge field. The energy spectrum of the Hamiltonian H is

plotted in Fig. 6a with a varying from O to 1. One sees that there is no
gap closing during this process, which usually denotes the absence of a
topological phase transition. However, the Z, topological invariant v is
changed from 1 to O (see Supplemental Note 8).

Typical bandstructures are given in Fig. 6a, b with (a, b)=(0, 1)
(topological nontrivial) and (a, b)=(1, 1) (topological trivial). More-
over, we find that such a phase transition occurs immediately once
a#0, indicating that the symmetry which protects the nontrivial
topological phase is broken by the introduction of the SL(2,C) gauge
field. Note that for an SU(2) gauge field, the hopping term U is an SU(2)
matrix, and the spin-flipped hopping terms satisfy an anti-conjugate
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Fig. 6 | Topological phase transition under SL(2, C) gauge fields. a Energy
spectrum of the Hamiltonian Hy. b, ¢ Bandstructures of the Hamiltonian Hy with
(a, b)=(0,1) and (a, b) = (1,1). d-f Phase diagrams in the (p,, py) plane for the model
with different choices of |a| and |b|, where the yellow lines denote the non-trivial

=Y -4 -4
20k g 0 k.Qim 20k gir 0 k.Qimr 20k dim

phase with a Z, topological invariant v=1, while the blue regions correspond to a
topological trivial phase with v=0. Red dots denote the values of p, and p, when
four-fold band-crossing points appear. g-i The corresponding band structures with
la| =1b| =1 and a different choice of p, and p,.

relation Uy, = — Uy *, while the variation of the parameter a breaks
this condition. To further investigate such a phase transition process,
we now define a and b as two complex numbers a=|a|e?« b=|b|e/Ps.
The phase diagram for |a| = |b| =1 is plotted in Fig. 6d. The blue region
(topological trivial phase with v=0) covers most of the area in the
phase diagram, and the nontrivial phase with v=1 occurs at
Pa=pPp*0.5m and p,=p, +1.5m, denoted by the yellow lines. Similar
phase diagrams are also found for |a|#|b| as shown in Fig. 6e, f.
Moreover, in the (o, p») plane, the corresponding bandstructure
always shows an insulator phase except for (pg, pp) =(0,+0.5m) and
(pa pp) = (1, £ 0.5m) denoted by the red dots, where the gaps close and
four-fold band-crossing points appear (e.g., Fig. 6g). Typical band-
structures for the topological nontrivial phase and the topological
trivial phase are given in Fig. 6h, i with (p, pp)=(0.1m, 0.6m) and
(Pa pPp) = (0, 0.6m). One can rewrite the condition for the topological
nontrivial phase as |ky,| = |k3,| or equivalently |Up|=|Uy|. In other
words, the symmetry that protects the nontrivial topological phase
under an SU(2) gauge field is broken by the introduction of an SL(2, C)
gauge field, but it can be retrieved in a more generalized form under an
SL(2, C) gauge field.

Discussion

Our proposal can be feasible for experimental demonstrations. The
fiber optic system could be a potential candidate as the combination
of photonic molecules and synthetic frequency dimension*®™** have
already been demonstrated in experiments, which provide the
building block of our theoretical proposal. Specifically, for a fiber-
based experimental setup with a cavity free spectral range -10MHz
and cavity length ~10m, the required amplitude of the voltage signal
sent to the EOMs is ~1V***%, The quality factor of the cavities ideally
desires an order of magnitude -10° to avoid the over-broadening of
bands, which is challenging, but can be potentially doable with the
development of state-of-art photonic technologies*®*’ (see Supple-
mental Notell). A precise control on the modulation depth and
frequency of the EOMs is required to minimize the distortion of the
measured bandstructure (see Supplemental Note 12). The disorder in
the coupling between the rings can lead to the inefficient excitation
of the edge state in experimental observation (see Supplemental

resonators. Moreover, a recent experiment® also shows the possi-
bility to introduce synthetic frequency dimension in a one-
dimensional ring resonator array. All these state-of-art nanopho-
tonic technologies provide the potential to realize our proposal in
the near future.

In summary, we extend SU(2) non-Abelian gauge fields to the
SL(2, C) regime, and give a theoretical proposal for simulating
topological materials under such a gauge field. The underlying phy-
sics is unveiled in two aspects: various Dirac phase transitions
beyond the conventional SU(2) gauge field and the transition of the
orientation of the ESPP. Moreover, the extension to SL(2, C) gauge
field unveils a more generalized symmetry that protects the non-
trivial Z, topological phase. We expect the proposed system to be a
unique and versatile platform for studying topological physics with
non-Abelian gauge fields. Future studies may include the employ-
ment of the non-Abelian topological charge®™*°, which describes the
topology of multiband systems, offering a useful tool to elucidate the
nature of the phase transition discussed. The proposed system may
also find potential applications on topological insulator lasers in
synthetic space-frequency dimensions”~® from pseudospin manip-
ulations via introducing an SL(2, C) gauge field, which provides an
extra degree of freedom to modify the spectrotemporal shape of the
output pulses.

Methods

Bloch Hamiltonian in the reciprocal space

We assume 0 satisfies 8 =2m/P, where P is an integer, and therefore,
the system can still maintain periodicity in both the spatial and fre-
quency dimensions. For the choice of 8 =2m/3, the lattice has a per-
iod of 2m/0=3 along the spatial axis, as the hopping along the
frequency dimension (associated with ) depends on the spatial
index n. The Bloch Hamiltonian in the reciprocal space is then given
by (detailed derivation for other choices of 8 is given in the Sup-
plemental Note 1)

O B
Hy= (Ck,l, +C1, k2, + k2, Ck 3, +Ck.3,—>

Note 13). On the other hand, in the field of integrated photonics, the (6)
H 41,50 H H H 51-53 7 T

photonic molecule*~° and synthetic frequency dimension have Hi(Cion, +Cio1,—Ci2, + i 2, —Ck 3, + Ci3,— ) »

been individually experimentally demonstrated for on-chip ring
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Bi(ks,0)  Ci(ke,0) eiPeikud 0 e ek 0
Ci(ke, 0 By(k;, 0) 0 e~ we—ikd 0 eiveikd
H - e ek 0 By(ks, 0)  Cy(ke,0) ek 0
0 evekd  C(ki,0) B,(ks,0) 0 e ive-ikd
eiveikd 0 e ek 0 Bs(k, 0)  Cs(ke, 0)
0 eive-ikd 0 eved ks, 0)  By(ke,0)

@)

where Bj(k¢, 0)=2cosjfcoskiQ, Cj(kg,6)=2asinj6coskiQ — 2isin

JjOsink;Q, and j=1, 2, 3 being the index of the sites in the reciprocal
space. By diagonalizing Hy, one can obtain the bandstructure. One can
also rewrite H, in spin-orbit coupling form

eipos e—ikxd e—i(pa3 eikxd
D,(k;,0) e¥%eikd |, (8)
ei(p03 e—ikxd efi(pa3 eikxd D3 (kf, 0)

D;(k, 0)
e~ ipos eikxd

Hk=

where  D;(k¢, 0) =2 cosj6 cos kpQa, +2asin j6 cos k¢Qo; +2sinj@sin
k:Qo, following the form of typical spin-orbit terms*’. The last two
terms in Dj(k, 6) correspond to the two different spin-flipped hopping
mechanisms.

Quantitative analysis on the ESPP
To quantitatively analyze the change of pseudospin behaviors origi-
nating from the competition between the two spin-flipped hopping

mechanisms. We consider a simplified model, which also exhibits the
same pseudospin behaviors as H. The Hamiltonian is read as

) ) ‘ cosfd O Cm, +
H, ;(Cm+1,+cm+1,—)< 0 cosf/\cy,_
0 asin@\ /¢
+ f -
+(Cm+1,+cm+lr)<asin9 0 )(cmﬁ) @

. 0 bsinB\ /¢
+ ¥ m, +
+(Cm+l,+cm+l,—)(bsin6 0 ><C >+H-C-,

', —
where the second and third terms correspond to the two hopping

mechanisms, respectively. One can obtain the eigenstate of the
Hamiltonian by diagonalizing H;

.
1 acosk — ibsink
@)= /1]
[ acosk+ibsink

where |¢| is the normalization factor. One can further obtain the
pseudospin projection (o;). We take (o;) as an example

_ 1 \/acosk—ibsink+\/acosk+ibsink
|2 acosk+ibsink Vacosk—ibsink /"

an

10)

<01> = <(p+ |0'1W)+>

We first consider the two special cases. Fora=0and b=1, {g,) = 0; for
a=1andb=1,(0,) = cos k, which are in accordance with our model. To
further illustrate the competition between the two hopping mechan-
isms, we consider a perturbative case, where b =1and a < 1. In this case

<01>=|w1|2<\/1+

One sees that (0,) depends on the values of acosk and bsink. For
k=0 and k=m, the nominator parts are vanished as bsink=0, so
(0,)=1, while for k>0, (0;) — 0 asacosk — 0. Therefore, there are
two peaks located at k=0 and k = i for {0, ), which can also be found in
the Supplemental Note 6.

—2ibsink ’
acosk+ibsink

2ibsink
* acosk — ibsin k) » 1)

Data availability

The data generated in this study have been deposited in the Figshare
database under accession code [https://doi.org/10.6084/m9.figshare.
29714342].

Code availability

The codes used to process the data generated in this study are avail-
able in Figshare under accession code [https://doi.org/10.6084/m9.
figshare.29714342].
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